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The article presents the basics of the method of correlation
spatial-frequency filtering of maps of phase distributions
of polyethylene films. Using the method of statistical analysis
of the structure of spatial-frequency filtered polarization maps
of polymer films, a set of methods and criteria for diagnosing
changes in the birefringence of packaging materials has been
substantiated and tested.
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Introduction

The fundamentals of the method
of correlation filtering [ 1-3] of phase
maps of images of polymer polyethy-
lene films are presented. Compa-
rative studies of the effectiveness
of methods of direct polarization
mapping of images [4-6] of poly-
mer packaging films, as well as a
spatial-frequency laser field trans-
formed by filamentous optical inho-
mogeneous grids, have been car-
ried out. Using a statistical analy-
sis [7, 8] of the structure of spatial-
ly-frequency-filtered polarization
maps of polymeric polyethylene films,

a set of basic criteria for diagnos-
ing changes in the anisotropy of
packaging materials was studied.

This work is aimed at approba-
tion of the principles of sequential
spatial-frequency correlation diffe-
rentiation of manifestations of lin-
ear and circular phase anisotropy
of polycrystalline networks of poly-
mer films for diagnostics of pack-
ing strength.

Method

On fig. 1 are shown the classical
scheme of the polarimeter with spa-
tial frequency filtering [9, 10].
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Irradiation of the investigation
sample 6 was carried out by a par-
allel (L =104 um) beam of a He-Cd
laser (A = 0,6328 um; W = 5 mW
power). The polarizing illuminator
consists of basic quarter-wave
plates 3, 5 and an optical polarizer
4, which ensures the formation of
a laser beam with an arbitrary azi-
muth 0° < ag < 180° or ellipticity
0° <Bo < 90° of polarization.

Polyethylene films were placed
at the focal plane of a polarizing of
the microlens 7 (FL f = 30 mm,
magnification: 4X, DAN. A. =0,1).

Low-frequency or high-frequ-
ency filters were located in the rear
focal plane.

The polarizing microobjective 9
(focal length f =30 mm, magnifica-
tion 4X, digital aperture N. A. =0,1)
was located at the focal length from
the frequency plane of the objec-
tive 7 and, therefore, carried out the
inverse Fourier transform of the spa-
tially-frequency filtered laser radi-
ation field.

The coordinate distribution of the
intensity of such a field was recor-
ded in the plane of the photosen-
sitive high resolution CCD camera

5
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x,

12 (the size of the photosensitive
area of the N = mxn = 1280x920
pixels), which was also located at
the focal distance from the micro-
objective 9 and provided a measu-
rement range of the structural ele-
ments of the reconstructed image
of polymer polyethylene films for
geometric dimensions of 2-2000 um.

The parameters of the Stokes
vector of the spatial-frequency fil-
tered image were determined for
each individual pixel

S1=1p *lgo;
S2 = 1lp - lgo;
S3=ls5 - l135;

(1)

here lg; lgg; las; 1135 — intensities
of linearly (azimuths: 0°; 90°; 45°;
135°) and left — lier @and right — lrignt
circularly polarized laser beam trans-
mitted by the system quarter-wave
plate 710 and polarizer 11.

S4 = lright — lieft-

Results

It were two types of optically thin
(attenuation coefficient t ~ 0,075+
+0,083) polyethylene films groups:
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Fig. 1. Optical scheme of the polarimeter with spatial frequency filtering,
where 1 — He-Ne laser; 2 — collimator; 3 — basic quarter-wave plate;
5, 10 — mechanically moving quarter-wave plates; 4, 11 — two polarizers;
6 — objects plane; 7, 9 — optical microobjectives; 8 — low-frequency
and high-frequency filters (low-frequency and high-frequency); 12 — high
resolution CCD camera; 13 — PC (special software)
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Fig. 2. Statistical (b, d) characteristics of the polarization image of polymer
polyethylene films: group 1(a) and group 2(b)

— group 1 — stable (without de-
formation) (N = 21 — number of
samples);

— group 2 — with mechanical
deformftion (N = 19 — number of
samples).

Fig. 2 shows images of the sta-
tistical structure of polyethylene po-
lymer films obtained in a crossed
polarizer and analyzer.

As can be seen from the fig. 2
that polarization-visualized images
of the optical-inhomogeneous com-
ponent of the samples and the geo-

0 L, x m

metric structure of their polycrys-
talline birefringence network consists
of two main fragments — large-scale
whiskers and small-scale deep crystals.

Comparative analysis of histo-
grams (fig. 2, b, d) of intensity dis-
tributions did not reveal significant
differences between this two groups
of polymers.

The results of the investigation
of the azimuth and ellipticity coor-
dinate distributions of both types
of polymer polyethylene films are
shown in fig. 3, 4.
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Fig. 3. Polarization maps (a, ¢) and their histograms (b, d) of polarization
azimuths a.(x, y) of polymer films (group 1 (a, b) and group 2 (c, d)
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Fig. 4. Polarization maps (a, ¢) and their histograms (b, d) of polarization
ellipticity B(x, y) of polymer films from group 1 (a, b) and group 2 (c, d)

Thus, the structure of polariza-
tion images of such phase-inho-
mogeneous layers is illustrated by
a set of statistical moments (1-4
orders), that characterizing polar-
ization maps a(x, y) and B(x, y) la-
ser images as a combination of po-
lyethylene polymer films from both
groups (table 1).

Fig. 5, 6 shows the diagnostic
capabilities of the Stokes polarime-
try method using spatial frequen-
cy filtering for two groups of poly-
mers.

Discussion

Data analysis of table 1 showed
that the values of the set of statis-
tical moments of all orders Mi=1.2.3.4~
~ M"i=1.2:3.4 within the standard de-
viation determined for the laser po-
larization maps images of polyethy-
lene polymer films, taken from group 1
and group 2, ‘overlap’ and cannot be
used as objective parameters of their
differentiation. Thus, the problem
of increasing the sensitivity of using
method by means of spatial-fre-
quency separation is relevant.

Table 1

Statistical moments of azimuth and ellipticity polarization maps
of polyethylene polymer films

Parameters a(x,y) Parameters B(x,y)
Group 1 Group 2 Group 1 Group 2
Mi=1,2:3.4 (number of (number of | M'i_1.0.3.4 [ (number of (number of
samples — 21)[samples — 19) samples — 21)[samples — 19)
M, 1,620,28 | 1,64+0,31 M*; | 0,28+0,039 | 0,33+0,044
Mo 0,085+0,01410,071+0,011 M5 0,12+0,018 |0,095+0,013
Mg 0,28+0,041 | 0,33+0,049 M*3 0,11+0,015 | 0,14+0,019
My 2,12+0,36 2,77+0,43 M*4 1,78+0,27 1,99+0,38

Mi=1 12,347~ IVl*i=1 12;3;4
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Fig. 5. Large-scale polymer polarization map (a, c), histogram (b, d),
distributions of the polarization azimuth of polyethylene polymer films
(group 1 (a, b) and group 2 (c, d)

A comparative analysis of the
set of statistical data characteriz-
ing the polarization maps of the azi-
muth o*(x, y) of alarge-scale image
(with predominantly linear birefrin-
gence) of crystals network revealed
certain differences between them.

Another figure characterized
the statistical analysis of the coor-
dinate distributions of the azimuth
maps that formed by circularly bi-
refringent networks of ‘small-scale’
crystals — fig. 6.
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Comparison of the data obtain-
ed revealed a significant expansion
of the range of change in the dis-
tribution of random values a.**(x, y)
of the histogram determined for the
spatially-frequency filtered polar-
ization map of a polycrystalline net-
work with predominant circular bi-
refringence.

Quantitative differences between
the polarization maps of the azimuth
of images of polycrystalline networks
are shown in table 2.

a", pan

Fig. 6. Small-scale polymer map (a, c), histogram (b, d), of azimuth
of polyethylene polymer films ((group 1 (a, b) and group 2 (c, d))
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Table 2

Statistical structure of polarization maps of azimuth of polycrystalline
networks of polyethylene films from both groups

LS a*(x, y) SCa**(x,y)
Parameters Group 1 Group 2 Group 1 Group 2
(number of sam- | (number of sam- | (number of sam- | (number of sam-
ples — 21) ples — 19) ples — 21) ples — 19)
M4 1,07+0,17 1,12+0,19 0,27+0,037 0,35+0,046
M» 0,14+0,021 0,19+0,025 0,082+0,012 0,19+0,031
M3 1,73+£0,24 0,16+0,027 0,11+£0,017 1,03+0,15
My 0,89+0,011 0,12+0,017 1,54+0,22 0,63+0,077

Differntiation sensitive growth
parameters of circular birefringence
of polycrystalline networks of poly-
ethylene films from group 2 (ana-
lysis from group 2):

— statistical moments of the 3rd
and 4th orders, characterizing the
coordinate distributions a.*(x, y) of
the low-frequency component of the
polarization azimuth map. Differen-
ces between their values ranging
from 7 (M3) to 10 (My) times;

— statistical moments of the 2nd-
4th order of distributions, charac-
terizing the coordinate distributions
a**(x, y) of the high-frequency com-
ponent of the polarization azimuth
map. Differences between their va-
lues ranging from 2 (M», M3) to 10
(Mgy) times.

Conclusions
1. The method of polarization map-
ping of optically inhomogeneous
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Y cTtaTtTi HaBe4eHO OCHOBU MEeToAY KopensuiiHoI NPOCTOPOBO-
yacToTHOI dinbTpauii KapTok ¢pasoBux po3noginie nonietnne-
HOBUX MJ1iBOK. BUKOpUCTOBYIOYM METOA CTaTUCTUYHOIO aHani3y
CTPYKTYPU NPOCTOPOBO-4YaCTOTHUX PisIbTPOBaAHMX Nonsipusa-
WilHUX KapT NoJliMepHUX NNiBoOK, OGrPpyHTOBaHO Ta anpobo-
BaHO KOMIMJIEKC MeTOAIB Ta KpUTEPIiiB AiarHOCTUKN 3MiHU
AOBOMPOMEHEeJSIOMJIEHHS NaKyBaJibHUX MaTepianis..

Kniouosi cnoBa: npuknagHe nporpamMmyBaHHeA; 0Opo0Oka
rpadivyHoi iHpopmauil; ctaHpgapTu3auia; nonirpadis;
nakyBaJibHi MaTepiann; maTtepiaso3HaBCTBO.

Hapinwna oo pepakuii 04.10.22

8

ISSN 2077-7264. TexHonoris i TexHika gpykapctea. 2022. Ne 3(77)

53





