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DIGITAL ALGORITHMS POLARIZATION-HOLOGRAPHIC
3D LAYERED MAPPING OF MICROSCOPIC IMAGES
OF POLYMERE FILMS IN POLYGRAPHIC PRODUCTION

Scientific work presents systematized data of original experi-
mental research of diagnostic efficiency of multiparametric
(using polarizing mathematical fourth order — Stokes vector)
layer-by-layer three-dimensional laser Stokes-polarimetric
coordinate digital mapping of a series of microscopic polariza-
tion-filtered images of coordinate distributions of random va-
lues of parameters of azimuth (the plane angle of oscillation
of the laser electric intensity vector) and ellipticity (eccen-
tricity of the laser coherent electric intensity vector trajec-
tory) of a set of optically anisotropic diffuse samples,
in which multiple interaction of laser radiation and op-
tical inhomogeneities takes place.

Keywords: polarimetry; 3D mapping; diagnostics;
depolarization layers of optically anisotropic polyethylene films.

Introduction

Traditionally, laser polarimetry
methods have been used to study
optical manifestations of polycrys-
talline component of phase-inho-
mogeneous layers with different
architectonics [1-5].

The main information result of
polarimetric studies is the infor-
mation about the structure of the
object in the form of polarisation
maps of the azimuth and ellipticity
of the polarization of its microsco-
pic image [6-10].

This method works well under
conditions of single scattering of la-
ser radiation in the volume of poly-
crystalline layer.

At the same time real polymer
layers used in polygraphy are dif-
fuse or multiple scattering.

Therefore, the development of
new polarimetric methods is rele-
vant for them.

In our work we will explore the
possibilities of 3D Stokes polarime-
try method based on digital holo-
graphic reconstruction of layer-by-
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layer azimuth and ellipticity polar-
ization maps of microscopic images
of polymer layers.

Methods

The optical location of the me-
thod of polarization interferometry
of microscopic images of diffuse po-
lycrystalline polyethylene films from
control group 1 and research group
2 is illustrated in fig. 1 [1-7].

The optical system of microob-
jectives 2 forms a flat wavefront of
coherent radiation of a gas He-Ne
laser one.

Optical cube 3 acts as a beam
splitter and forms two beams —
illuminating and reference or ref-
erence.

Inverting mirror 4 directs the
laser beam through a polarizing fil-
ter system 6-8 in the direction of
the polyethylene sample 9. The
digital microscopic image of the
object 9 is projected by the polar-
izing microlens 70 onto the plane
of the digital camera 15.

The ‘reference’ laser beamis di-
rected by the optical mirror 5 through
the polarizing filter 77-13 into the
digital image plane of the object 9.

The resulting laser interference
pattern is recorded by a digital came-
ra 15 through a linear polarizer 74.

We use the well-known algrithm
for determining the distributions of

\ 7

the Stokes vector Si=1.2.3.4(0k.X,y)
parameters with algorithmic repro-
duction of the polarization azimuth
maps a(0,x,y) in each phase pla-
ne 0y [8-10]

a(6,,%,y) =

= O,5arctg{

Ss(ek,x,y)} (1)

SZ (ek,x,Y) .

To determine the diagnostic-op-
timal phase plane, we used the fol-
lowing algorithm for analyzing layer-
by-layer polarization maps.

1. The step of discrete phase ‘macro’

scanning was chosen Ag"™*=0.25rad -

2. Algorithmically, a series of po-
larization azimuths corresponding

to each A6.*=0.25rad of the layer-
by-layer coordinate distributions
was reconstructed.

3. Statistical moments of the 1st—
4th orders SMi=1,2.3.4 were calcu-
lated, which characterize the obta-
ined 2D distributions of the polar-
ization azimuth and elliptisity.

Results

Coordinate (fragments (1)) and
statistical parameters of histograms
(fragments (2)) of the distributions
of the polarization azimuth of digi-
tal microscopic images are shown
in a series of fragments in fig. 2-5.

— H =

Fig. 1. Optical scheme of 3D Stokes-polarimetry of microscopic images
of polymer layers from group 1 and group 2
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Fig. 2. Topographic map (fragment
(1)) and histogram of layer-by-layer
distribution (fragment (2)) of the po-
larization azimuth of a digital micro-

scopic image of a control group 1

Fig. 3. Topographic map (fragment
(1)) and histogram of layer-by-layer
distribution (fragment (2)) of the po-
larization azimuth of a digital micro-
scopic image of a research group 2

scopic images of diffuse polymer
layers from group 1 and group 2:
— The presence of the widest
possible range of coordinate and
quantitative changes in the polar-

Discussion

Comparative analysis of the re-
sults of layer-by-layer polarization-
holographic measurement of pola-
rization maps (fig. 2-5) of micro-

-0 =30 20 10 4] 10 20 30 4n

Fig. 4. Topographic map (fragment
(1)) and histogram of layer-by-layer
distribution (fragment (2)) of the
polarization elliptisity of a digital
microscopic image of a group 1
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Fig. 5. Topographic map (fragment
(1)) and histogram of layer-by-layer
distribution (fragment (2)) of the
polarization elliptisity of a digital
microscopic image of a group 2
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ization azimuth value in the optimal
phase plane of digital microscopic
images — (-0.25n < o < 0.25n).
— Individual structure of histo-
grams of distributions of the pola-
rization azimuth in the optimal
phase plane of digital microscopic
images of a set of diffuse polymer
layers from group 1 and group 2.
The following results were ob-
tained an excellent level of accu-
racy of differential of diffuse poly-
mer layers from group 1 and group
2—A;=95 %+ 96 %.

Conclusions

Possibilities of 3D Stokes-po-
larimetric mapping of microscopic
images of diffuse polymer layers
from group 1 and group 2 of layered
polarization azimuth maps.

System 3D polarization-holo-
graphic measurements and statis-
tical analysis of algorithmically rep-
roducible layer-by-layer maps and
histograms of the distribution of the
azimuth of polarization of microsco-
pic images of representative samples
of polymer films were carried out.
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B po6oTi npeacraBneHo cucTeMaTu30BaHi gaHi opuriHasbHUX
eKcrnepuMeHTasibHUX A0CifKeHb AiarHOCTUYHOI €ePeKTUBHOCTI
OaraTonapamMeTpU4HOro (3 BUKOPUCTAHHAM NoNApuU3aLuiiHoro
MaTeMaTUYHOro 4eTBEPTOro NopsiaKky — sekropa Crokca) no-
LLapOoBOro TPMBMMIPHOIO J1a3epPHOro CTOKCOBO-Nonasspume-
TpuyHoro undpoBoro BigoGpaeHHs cepii MiKpOCKONIYHUX
300paxkeHb i3 nongpusauiiHum PinbTPoM, KOOPAUHATHUX
pos3noainis BUNaaKoBUxX 3Ha4YeHb NapamMeTpiB asumyTa
(nnockoro KyTa KoJiuBaHb BEKTOPY €/1IeKTPUUYHOI Hanpy-
XXEeHOCTI na3epa) Ta eninTUYHOCTI (EKCLeHTPpUCUTeTy
TPaEKTOPIi KOrepeHTHOro BEKTOPY €NeKTPUYHOI Hanpy-
)XeHOCTi nasepa) Habopy ONTUYHO aHi30TPONHUX Audys-
HUX 3pa3KiB, B SKMX MHOXXWHHA B3aEMOAifl, Ma€e Mmicue
Jla3epHe BUNPOMIiHIOBAHHS Ta ONTUYHIi HEOAHOPIAHOCTI.

Krnio4yoBi cnoBa: nonapumeTpis; 3D maniHr; giarHocTuka;
AenonsapusadiiHi Lwapv onTU4YHO aHi30TPOMHUX

nonieTuneHoBux NnJiBokK.
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